
Path Planning for a UAV by Considering Motion
Model Uncertainty

Hossein Sheikhi Darani, Ali Noormohammadi-Asl and Hamid D. Taghirad
Advanced Robotics and Automated System (ARAS), Industrial Control Center of Excellence (ICEE)

Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Email: h.sheikhi, a.noormohammadi@ieee.org, taghirad@kntu.ac.ir

Abstract—The primary purpose of path planning for un-
manned aerial vehicles (UAVs), which is a necessary prereq-
uisite toward an autonomous UAV, is to guide the robot to
the predefined target while the chosen path is optimized. This
paper addresses the problem of path planning for an unmanned
aerial vehicle in a 2D indoor environment, considering mo-
tion uncertainty. To cope with this challenge, the problem of
motion planning is formulated in three parts. A vision-based
extended Kalman Filter (EKF) is used to localize the UAV in
the unstructured environment. To overcome motion uncertainty,
the problem is modeled as a Markov decision problem (MDP).
Finally, a novel dynamic feedback linearization based switching
controller is proposed for point-to-point motion. Simulation and
experimental results are given to show the effectiveness of the
proposed path planning method in practice.

I. INTRODUCTION

Autonomous Unmanned Aerial Vehicles (UAV) have been
utilized extensively in a variety of applications ranging from
search and rescue operations, aerial surveillance, and mapping.
On the other hand, without any doubt, path planning is a fun-
damental part of an autonomous robot. In a general sense, path
planning means finding a reachable and optimized path from
the robot’s initial configuration to the target configuration [1].
What is meant by a reachable path is generally a collision-free
path, while optimized means a pathway that robot can traverse
it in a time-optimal manner.

Configuration space discretization is the starting point in
the path planning problem [2]. Cell decomposition and ar-
tificial potential field are representative of two conventional
approaches developed in the literature [3], [4]. Recently some
sampling-based methods like probabilistic roadmap (PRM) [5]
and rapidly-exploring random tree (RRT) [6] have been suc-
cessfully employed in high dimensional configuration spaces.
In this paper, due to the probabilistically completeness nature
of the sampling-based methods, the PRM is used to initially
build a road map.

In the absence of uncertainties in the environment, many
methods are developed to give the fastest path based on
graph-based algorithms [7]–[9]. In reference [10], some
prevalent and modern algorithms like A∗, BasicTheta∗, Phi∗

and JPS (A∗) are subtly compared. However, in real imple-
mentations, finding the fastest path is quite sensitive to the
uncertainties. In other words, due to the uncertain nature of
the robot’s motion, the robot may diverge from its planned
path, which will lead to a collision, especially in narrow

passages. In this paper, the main focus is to find the fastest path
while reducing the traversing risk. Therefore, by considering
uncertainty in robot motion as the most significant uncertainty
in this problem, the higher probability of success for arriving
at the desired goal is achieved with the expense of a more
sophisticated algorithm.

Markov Decision Process (MDP) is a widely used approach
to deal with uncertainty based path planning. Alterovitz et al.,
in [11] used an MDP based path planning for a medical robot
while the robot states were accurately given. Reference [12]
have dealt with uncertainty in the robot’s motion and also
robot sensing by using FIRM (Sampling-based Feedback
Motion Planning Under Motion Uncertainty and Imperfect
Measurements) and a partially observable Markov decision
process (POMDP) approach. While in this paper, it is assumed
that some information about the environment’s map is given,
an Extended Kalman Filter (EKF) is adapted to localize the
robot in the environment, whose observation input is based on
the robot’s onboard camera and the markers mounted on the
walls [13]. While results show state estimation of EKF is not
precise, it is shown in practice that relying on EKF localization
is accurate enough for state estimation in our path planning
problem.

Designing a proper controller is another essential part of
the implementation of robot path planning. The motion control
of the mobile robot is concerned with two major challenges,
path tracking control, and posture stabilization. Reference [14]
shows that the posture stabilization of a wheeled mobile robot
is required at least a discontinuous or time-varying controller,
and the linear controller would not perform well. In order to
overcome the posture stabilization problem, many controllers
have been proposed. References [15]–[17] use switching and
variable structure controllers. In [14], [18], [19] nonlinear
based controllers such as backstepping and feedback linearized
controller are adapted. However, some of these controllers
suffer from poor transient performance and slow convergence
rate near the goal position. References [14], [20] use a dynamic
feedback linearized approach for both trajectory following
and posture stabilization problem. While the aforementioned
problems are suitably tackled, However, it shows some draw-
backs in stabilizing the robot in the desired heading angle,
which will be elaborated in more depth in the next sections.
The heading angle stabilization problem is more significant in
the performance of our implementation, where a vision-based

localization approach is used to estimate the robot’s position
and orientation. The uncertainty in the localization of the
robot, especially in robot’s orientation, causes the controller
poor performance or failure in convergence to the destination
point. Therefore, we proposed a switching based controller to
cope with this problem.

The paper is organized as follows. First, some preliminaries
about MDP and the switching-controller are given in the
next section. Then, the formulation of the proposed algorithm
is presented, and finally, the results of simulation and a
real implementation of the proposed algorithm is given and
compared to A∗ implementation in section four, Finally the
concluding remarks are presented in the final part of the paper.

II. PRELIMINARIES

A. short review on MDP Problem

In robotics literature, Markov Decision Process (MDP) is
widely used to handle the uncertainties. An MDP is fully
defined by a 4-tuple < S ,A,T ,R > with the following de-
scription.
• S is a finite set of the robot states thanks to the PRM
• A is a finite set of the robot actions at each state that

robot is able to take for state transition
• T is the state transition function S ×A× S → [0 , 1].

T (s, a, s ′) defines the success probability when the
robots performs action a for going from state s to state
s′

• R is the reward function S ×A× S → R. R(s, a, s ′)
defines the robot reward when action a is taken for
transition form state s to state s′.

Finding the optimal policy π∗ is the MDP desired objec-
tive. In this paper Bellman Equation is used to find the π∗ as
follows:

V π∗
(s) =

max

a ∈ A

∑
s′∈s

T (s, a, s′)
(
R(s, a, s′)+γV π∗

(s′)
)

(1)

π∗(s) = argmaxV π∗
(s) (2)

These equations are solved by policy iteration method, which
is based on a dynamic programming approach [21].

B. short review on EKF localization

Precise localization is another part of a path planning prob-
lem. In this paper, we assume that the robot motion in vertical
and the horizontal plane are decoupled. As mentioned before,
this paper addresses the path planning of the UAV solely in the
horizontal plane. To overcome this 2D localization problem,
we consider a Gaussian noise for the system and implement
an EKF localization algorithm.

Motion model: We consider the robot’s motion model by
unicycle kinematics:

Xk+1 = f
(
Xk , uk ,wk

)
=

xk +
(
Vkδt+ nv

√
δt
)
cos θk

yk +
(
Vkδt+ nv

√
δt
)
sin θk

θk + wkδt + nw

√
δt

(3)

where Xk =
(
xk , yk , θk

)
are state variables.

(
xk , yk

)
are the

coordinates of the UAV in the horizontal plane, and θk is the
robot heading angle in k-th step. The vector uk =

(
Vk ,wk

)T
is the system’s control input where Vk ,wk are robots linear
and angular velocity, respectively.

Vector wk =
(
nv ,nw

)T ∼ N
(
0, Qk

)
is the robot motion

noise caused by factors such as error in time intervals, error
in robot’s model and external disturbances. In addition to the
the uniform noise in the motion, there is a noise depending on
the motion command signal strength. Therefore, we can write
the motion noise covariance as follows:

Qk =

[(
ηVk + σv

b

)2
0

0
(
ηwk + σw

b

)2
]

(4)

in which, η, σv
b , σ

w
b are constant values.

Sensor model: In this paper, we used ArUco library pro-
vided in OpenCV [22], [23], to generate black-white patterns,
which each of them has a unique id. By detecting these
markers, we can obtain the relative range and bearing of UAV
to each marker. If we consider the marker j as jL in robot’s
environment coordinates, the robot’s observation model will
be as follows:
j zk =

[
||jdk ||, atan2

(j
d2k

,j d1k

)
− θ

]T
+ jv , jv ∼ N

(
0 ,j R

)
(5)

where jdk =
[j
d1k

,j d2k

]T
:=

[
xk , yk

]T − Lj .
Observation noise for j-th marker denoted by j v is propor-

tional to the distance of the landmark and the incident angle
between the camera and landmark:

jRk = diag

((
ηrd ‖j dk ‖ +ηrφ‖φk|+ σr

b

)2
,

(
ηθd ‖j dk ‖ +ηθφ‖φk|+ σθ

b

)2) (6)

in which, all of the parameters ηrd , ηθd , ηrφ , ηθφ , σ
r
b , σ

θ
b are

constant values. We assume that the robot observes r marker
{Li1 , Li2 , ..., Lir} in one time interval, thus combination of
all system observations will be z =

[i1
zT ,i2 zT , ...,ir zT

]
.

According to independence of observations, observation
model may be written as z = h

(
x
)
+ v where,

v =
[i1

vT , ...,ir vT
]T

is observations noise vector
v ∼ N

(
0 ,R

)
which is obtained from R = diag

(i1
R, ...,ir R

)
.

C. Switching Controller

Switching controller we proposed in this paper is based on
Dynamic Feedback Linearization (DFL) proposed [14] and a
Lyapunov-based controller. DFL controller is able to stabilize
a unicycle robot in an ideal position, but in experiments, we
faced with a problem in stabilizing the robot’s heading angle at
the end of the path and when the robot is near the destination
coordinates. Heading angle stabilization is more significant
when we use this controller in the path planning problem
where the robot should traverse through several positions to
reach the goal point, and the heading angle error in one of
these locations may cause failure in the total path planning.

In order to cope with this problem, the DFL based switching
controller is adopted as follows to steer the initial position,
X̂+

k =
(
x̂+
k , ŷ

+
k , θ̂

+
k

)
, to the target position v = (vx, vy, vθ).

Namely the proposed variable structure controller is as fol-
lows: {

DFL Controller if ep ≥ ε

Heading-Angle Controller if ep < ε
(7)

where ep is defined as ep =

√(
x̂+
k − vx

)2
+

(
ŷ+k − vy

)2
and

ε is an ideal positive value depending on the robot and the
stopping region radius.

The DFL controller stabilizes the system at the origin. In
order to stabilize the system in an arbitrary state, we have used
the following transformation.(

x̆+
k

y̆+k

)
=

(
cos vθ − sin vθ
sin vθ cos vθ

)−1 (
x̂+
k − vx

ŷ+k − vy

)
θ̆+k = θ̂+k − vθ

(8)

More details of the DFL controller may be found in [14].
In the heading angle controller, using the θ̆2

2 as Lyapunov
candidate, the following control inputs are proposed.

V = 0, whilew = Kθ tanh kθ θ̆
+
k (9)

in which, Kθ and kθ are positive constants.
Consequently, the first DFL controller is executed as long

as the distance between robot pose and its target value is less
than ε. Then, the controller switches to the heading angle
controller and sets the robot heading angle. In the heading
angle controller, the linear velocity of the robot is zero; thus,
the robot position

(
x , y

)
is fixed.

III. PATH PLANNING UNDER MOTION UNCERTAINTY

A. MDP Implementation

In the simulation environment, algorithm 1 is used to
calculate the state transition function based on the Monte Carlo
approach. Also, in this paper, two different reward functions
are considered as follows:

R1(s, a, s
′) = 1 (10)

R2(s, a, s
′) = MaxT − T (s, s′) (11)

By using a constant reward for all transitions (R1), MDP
will just focus on finding the path by the most successful
probability toward the desired goal and finding the fastest path
is not considdered at all. While by considering traverse time
between states in the second reward function (R2) MDP finds a
trade-off solution with a highly probable path while it is fast. In
the second equation, MaxT means the maximum traverse time
between all transitions and T (s, s′) is the time for traversing
from state s to state s′.

Algorithm 1 : State Transition Function Psudo-Code
Require:
V,E
m : number of sample points to generate for each transition
r : error margine
for all v ∈ V do

for all v′ ∈ neighbour(v) do
timeStep := full time takes the robots traverse from
v to v′ without considering uncertainty
fault := 0
for i = 1 to m do

tempPose := v
nv, nw = random noise for linear and angular
velocities
for j = 1 to timeStep do
tempPose := robot position while trajectory
controller is running by considering uncertainty
with noises nv, nw

if Collision(tempPose) then
fault := fault+ 1 & go to line 5

end if
end for
if distanse(tempPose, v′) ≥ r then
fault := fault+ 1

end if
end for
P (v, v′) = 1− (fault/m)

end for
end for

B. EKF implementation

The linearized system model, is considered as γ =(
A,B,G,Q,H,M,R

)
which is represented by the following

state space:

xk+1 = Axx +Buk +Gwk, wk ∼ N
(
0, Q

)
zk = Hxk +Mvk, vk ∼ N

(
0, R

) (12)

where matrices A,B,G,H , and M are given as follows.

A =

1 0 Vkδt sin θk
0 1 Vkδt cos θk
0 0 1

 , B =

δt cos θk
δt sin θk

0 δt

G =

√
δt cos θk 0

√
δt 0 0√

δt sin θk 0 0
√
δt 0

0
√
δt 0 0

√
δt

jH =

(
cos jγ sin jγ 0

− sin jγ
jr

cos jγ
jr −1

)
,M = I

and γ = atan2
(
jd2,

jd1
)

and jr =
√

jd21 +
jd22

EKF is initialized by an initial input and an initial robot pose
estimation through its mean value µ0 and its covariance Σ0.
Then it gets a control input u1 , a map m , and a set of features
z1 = {z11 , z21 , ...} measured at the initial time step, along with
correspondence variables c1 = {c11 , c21 , ...}. Its output is an
updated estimate of µ1, Σ1. This procedure is repeated in every

time step with updated inputs. EKF has the two following
stages. Firstly a prediction phase, in which the robot’s state
is predicted using the robot’s previous state estimate, input
control and motion model as follows:

µ̄k = Aµk−1 +Buk−1 (13)

Σ̄k = AΣt−1A
T +GQGT (14)

And then a correction phase, in which the prediction is
corrected using by using the measurements:

µk = µ̄k +Kk

(
zt − ẑt

)
(15)

Σk =
(
I −KkHk

)
Σ̄k (16)

in which, the Kalman Gain Kk is obtained from:

Kk = Σ̄kH
T
k

(
HkΣ̄kH

T +R
)−1

(17)

C. Switching Controller Implementation

In the DFL controller, the robot’s linear and angular velocity
are set as:

Vk = Vk−1 +
(
u1 cos θ̆

+
k−1 + u2 sin θ̆

+
k−1

)
δt

wk =
(
u2 cos θ̆

+
k−1 − u1 sin θ̆

+
k−1

)
V −1
k−1

(18)

where u1 and u2 are defined as follows:

u1 = −kp1x̆k−1 − kd1 ˙̆xk−1

u2 = −kp2y̆k−1 − kd2 ˙̆yk−1

(19)

where, kp1, kp2, kd1 and kd2 should satisfy k2d1 − 4kp1 =
k2d2 − 4kp2 and k2d2 − k2d1 > 2

√
k2d2 − 4kp2 conditions.

Experimentally, we imposed conservative bounds on our
controller outputs:

|V | ≤ Vmax = 0.4m/s |w| ≤ wmax = 0.5rad/s

Also, we set the switching controller parameters as follows:
ε = 0.1 kp1 = kp2 = 0 .3 kd1 = kd2 = 0 .4

IV. SIMULATION AND REAL IMPLEMENTATION RESULTS

The results of simulation and real implementation are pre-
sented in this section.

A. System Overview

In this paper, the Parrot Bebop2 drone is used for both
simulation and real implementation. The Parrot Bebop2 (Fig.
1Parrot Bebop2 used in our implementationfigure.1) is a robust
and maneuverable UAV which contains two forward-facing
and downward-facing cameras, a sonar height sensor and a
Linux based real-time operating system. The front camera is
streamed in 30 frames per second with 640 × 480 resolution
[24]. The robot velocity is obtained using the onboard optical
flow algorithm and transmitted to the ground station with
4HZ frequency rate, which will significantly influence the
uncertainty in the robot’s motion model. Commands and
images are transmitted via a WiFi connection between the host
machine and the Bebop 2 drone. We run our algorithms on
the host machine (NVIDIA GeForce GTX 960M, IntelCore

Fig. 1. Parrot Bebop2 used in our implementation

Fig. 2. Simulation environment

i7, 12GB memory), running Ubuntu 16.04 and ROS Kinetic
Kame with c++ language.

Furthermore, Parrot-Sphinx [25] as a simulation package
developed in Gazebo by using ROS, is used for the simulation
part.

B. Switching controller comparison by the DFL controller

In simulation environment (Fig. 2Simulation environment-
figure.2), we can consider any arbitrary start and target
positions where in this experiment we set the robot’s initial
and target positions as:

qinitial =
(
0, 0, 1.5

)
qtarget =

(
1, 4, 0

)
In Fig. 3Real and belief trajectories of the robot in switching

and DFL controllersfigure.3, the real trajectories of the robot
and their belief map in position space are depicted with both
switching and DFL controllers. These two trajectories are
similar in most of the simulation time except at the and of
the flight, since the switching and the DFL controllers are
the same and generate the same control input in this time
period. However, when the robot gets close to the desired
state, the switching controller outperforms the DFL controller.
Fig. 4Real and belief heading angle of the robot in switching
and DFL controllersfigure.4 shows the heading angle of the
robot using these controllers and the robot’s belief space. It is
clear that the switching controller has better performance in
adjusting the heading angle near the goal point.

C. Path Planning Results

The first task of the robot, which is done in both simulation
and the real environment is to find a path from the initial
state (S = 9) to the desired state (S = 17). MDP output
for accomplishment of this mission is to travel the following

Fig. 3. Real and belief trajectories of the robot in switching and DFL
controllers

Fig. 4. Real and belief heading angle of the robot in switching and DFL
controllers

consecutive states: [9, 8, 10, 7, 15, 18, 17]. Fig. 5Real and
belief trajectories results in the simulation environmentfigure.5
shows the traversed path in the simulation environment. In this
figure, the blue line shows the belief trajectory while the green
one shows the real trajectory of the robot. Furthermore, Fig.
6Real trajectory result in the real environmentfigure.6 shows
the aforementioned task in the real environment.

As we mentioned before, two different reward functions

Fig. 5. Real and belief trajectories results in the simulation environment

Fig. 6. Real trajectory result in the real environment

TABLE I
PATH PLANNING COMPARISON RESULTS

Experiment Algorithm Reward/Cost Generated Path

Exp 1
A∗ time [3, 4, 5, 7, 12, 10, 9]

MDP R1 [3, 2, 5, 7, 8, 10, 9]
R2 [3, 2, 5, 7, 12, 10, 9]

Exp 2
A∗ time [0, 2, 5, 7, 12, 13]

MDP R1 [0, 3, 2, 5, 7, 12, 16, 13]
R2 [0, 3, 2, 5, 7, 12, 16, 13]

Exp 3
A∗ time [26, 3, 2, 1]

MDP R1 [26, 19, 4, 5, 1]
R2 [26, 20, 4, 5, 1]

are considered in this paper. Table IPath Planning comparison
resultstable.1 compares the results of the path planning prob-
lem by considering uncertainties using MDP by two reward
functions and also without considering uncertainty by using
the A∗ algorithm. In this table, experiments are defined as
follows.

• Exp 1. finding a path from state s = 3 to state s = 9
• Exp 2. finding a path from state s = 0 to state s = 13
• Exp 3. finding a path from state s = 26 to state s = 1

As it is seen in the Exp 1 generated paths the A∗ algorithm
chooses the fastest path regardless of the probability to collide
with the obstacles. While MDP with least possible risk (using
reward function R1) avoids traverse from state s = 3 to state
s = 4 directly because it pass near an obstacle. It prefers
to chose the lower risk path by passing from state s = 2 to
traverse from state s = 3 to state s = 4. The generated path
by the second reward function is a tradeoff between A∗ and
MDP with the first reward function.

V. CONCLUSIONS

In this paper, a path planning problem for a UAV under
motion uncertainty is considered as an MDP problem with
two different reward functions, and the results are compared
to that of the conventional A∗ algorithm. Furthermore, the
EKF vision-based localization is used to localize the UAV in
an uncertain environment. The implementation results confirm
that although the EKF estimates are not completely precise,
however, they are accurate enough to be used in the proposed

path planning approach. Moreover, a switching based con-
troller is proposed in this paper for the posture stabilization
problem of a mobile robot. The switching control consists
of a dynamic feedback linearization and a Lyapunov-based
controller. It is verified in the simulation and experimental
results that the proposed controller is able to navigate the robot
to the desired state, including position and heading orientation,
in the presence of robot motion uncertainty. The promising
result verifies the further implementation of the proposed
algorithm for the path planning and control of autonomous
robots.

VI. ACKNOWLEDGMENT

We are sincerely grateful to the staff of the KN2C robotics
team for helping us in carrying out the experiments and
collecting data.

REFERENCES

[1] Jrme Barraquand and Jean-Claude Latombe. Robot motion planning:
A distributed representation approach. The International Journal of
Robotics Research (IJRR), 10(6):628–649, 1991.

[2] Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia Kavraki, and Sebastian Thrun. Principles of Robot
Motion: Theory, Algorithms, and Implementation – Errata. 2010.

[3] Chenghui Cai and Silvia Ferrari. Information-driven sensor path plan-
ning by approximate cell decomposition. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 39(3):672–689, 2009.

[4] Charles W Warren. Global path planning using artificial potential
fields. In Proceedings, 1989 International Conference on Robotics and
Automation, pages 316–321. Ieee, 1989.

[5] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
Aug 1996.

[6] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[7] Esther M Arkin, Refael Hassin, and Asaf Levin. Approximations for
minimum and min-max vehicle routing problems. Journal of Algorithms,
59(1):1–18, 2006.

[8] Maxim A Batalin and Gaurav S Sukhatme. The design and analysis of
an efficient local algorithm for coverage and exploration based on sensor
network deployment. IEEE Transactions on Robotics, 23(4):661–675,
2007.

[9] Hiroshi Nagamochi and Kohei Okada. A faster 2-approximation algo-
rithm for the minmax p-traveling salesmen problem on a tree. Discrete
Applied Mathematics, 140(1-3):103–114, 2004.

[10] Frantiek Ducho, Andrej Babinec, Martin Kajan, Peter Beo, Martin
Florek, Tom Fico, and Ladislav Juriica. Path planning with modified
a star algorithm for a mobile robot. Procedia Engineering, 2014.

[11] Ron Alterovitz, Thierry Siméon, and Ken Goldberg. The stochastic
motion roadmap: A sampling framework for planning with markov
motion uncertainty. 2007.

[12] HD Taghirad A Noormohammadi-Asl. Multi-goal motion planning
using traveling salesman problem in belief space. Information Sciences,
502:164–184, 2019.

[13] S. Thrun, W. Burgard, D. Fox, and R.C. Arkin. Probabilistic Robotics.
Intelligent Robotics and Autonomous Agents series. MIT Press, 2005.

[14] Giuseppe Oriolo, Alessandro De Luca, and Marilena Vendittelli. Wmr
control via dynamic feedback linearization: design, implementation,
and experimental validation. IEEE Transactions on control systems
technology, 10(6):835–852, 2002.

[15] Juan Marcos Toibero, Flavio Roberti, Ricardo Carelli, and Paolo Fiorini.
Switching control approach for stable navigation of mobile robots in
unknown environments. Robotics and Computer-Integrated Manufac-
turing, 27(3):558–568, 2011.

[16] V Sankaranarayanan and Arun D Mahindrakar. Switched control of a
nonholonomic mobile robot. Communications in Nonlinear Science and
Numerical Simulation, 14(5):2319–2327, 2009.

[17] Yu Tian and Nilanjan Sarkar. Control of a mobile robot subject to wheel
slip. Journal of Intelligent & Robotic Systems, 74(3-4):915, 2014.

[18] Farzad Pourboghrat. Exponential stabilization of nonholonomic mobile
robots. Computers & Electrical Engineering, 28(5):349–359, 2002.

[19] Amin Zeiaee, Rana Soltani-Zarrin, Suhada Jayasuriya, and Reza Lan-
gari. A uniform control for tracking and point stabilization of differential
drive robots subject to hard input constraints. In ASME 2015 Dynamic
Systems and Control Conference, pages V001T04A005–V001T04A005.
American Society of Mechanical Engineers, 2015.

[20] Alessandro De Luca, Giuseppe Oriolo, and Marilena Vendittelli. Control
of wheeled mobile robots: An experimental overview. In Ramsete, pages
181–226. Springer, 2001.

[21] Bruce L Miller. Finite state continuous time markov decision processes
with a finite planning horizon. Technical report, RAND CORP SANTA
MONICA CALIF, 1967.

[22] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-
Cuevas, and Manuel Jesús Marı́n-Jiménez. Automatic generation and
detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280–2292, 2014.

[23] Sergio Garrido-Jurado, Rafael Munoz-Salinas, Francisco José Madrid-
Cuevas, and Rafael Medina-Carnicer. Generation of fiducial marker dic-
tionaries using mixed integer linear programming. Pattern Recognition,
51:481–491, 2016.

[24] Parrot bebop 2. https://www.parrot.com/us/drones/parrot-bebop-2.
[25] Parrot-sphinx. https://developer.parrot.com/docs/sphinx/whatissphinx.

html.

